US009411818B2

a2 United States Patent

Motwani et al.

US 9,411,818 B2
*Aug. 9,2016

(10) Patent No.:
(45) Date of Patent:

(54) COMMAND LINE INTERPRETER FOR
ACCESSING A DATA OBJECT STORED IN A
DISTRIBUTED STORAGE NETWORK

(71) Applicant: CLEVERSAFE, INC., Chicago, I,

(US)

(72) Manish Motwani, Chicago, IL. (US); S.

Christopher Gladwin, Chicago, 1L,

(US); Jesse Louis Young, Woodstock, 1L

(US); Matthew Michael England,

Chicago, IL. (US)

Inventors:

(73) International Business Machines

Corporation, Armonk, NY (US)

Assignee:

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by O days.

This patent is subject to a terminal dis-
claimer.

@
(22)

Appl. No.: 14/338,504

Filed: Jul. 23, 2014

(65) Prior Publication Data

US 2014/0344284 A1l Now. 20, 2014

Related U.S. Application Data

Continuation of application No. 12/839,209, filed on
Jul. 19, 2010, now Pat. No. 8,819,011, which is a
continuation-in-part of application No. 12/218,594,
filed on Jul. 16, 2008, now Pat. No. 7,962,641.

Provisional application No. 61/256,436, filed on Oct.
30, 2009.

(63)

(60)

Int. Cl1.

GO6F 12/00
GO6F 17/30
HO4L 29/08
GO6F 11/10

(51)
(2006.01)
(2006.01)
(2006.01)
(2006.01)

(52) US.CL
CPC ... GOG6F 17/30194 (2013.01); GOGF 17/30386
(2013.01); HO4L 67/1097 (2013.01); GOGF
11/1008 (2013.01); GO6F 2211/1059 (2013.01)

(58) Field of Classification Search
CPC GOG6F 11/3034; GOGF 12/0824; GO6F
17/30197; GOG6F 3/067; GO6F 17/30194;
GOG6F 17/30386; GOGF 2211/1059; GO6F
11/1008
USPC 707/736, 781, 802, 770, 827, 999.001,
707/999.002, 999.101
See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

4,430,699 A *
5,485474 A *
6,356,863 Bl *

2/1984 Segarraetal. ... 709/230
1/1996 Rabin .. 714/762
3/2002 Sayle 703/27

(Continued)

Primary Examiner — Mohammed R Uddin
(74) Attorney, Agent, or Firm — Garlick & Markison;
Timothy W. Markison

(57) ABSTRACT

A user device includes a DSN interface operably coupled
with a DSN memory and a DS processing module for storing
and retrieving a data object from the DSN memory, wherein
the data object is partitioned into a plurality of data segments
and wherein each of the plurality of data segments is stored in
the DSN memory as a plurality of encoded data slices that are
generated based on an error encoding dispersal function. The
user device also includes a command line interpreter operable
to interpret a file command as a request to display the data
object by an application program, determine the data object is
stored in the DSN memory and request the DSN processing
module to retrieve the data object from the DSN memory and
provide the data object to the application program.

18 Claims, 13 Drawing Sheets

user device 12

DS processing unit 16

data object 40

computing core 26

DS
processing 34

computing core 26

DS processing 34

user device 14

computing
core 26

DSN interface 32 interface 3&,

interface 30

DSN interface 32

LN

network 24
slices 48—

I

1 Data Segment1 42 | | Data SegmentY 42n
| |

|

|

|

| [Ecslicev_126a ;
| —

1 . i

; (11 : H |

i . L ;

| |

! [ECsice 1 xaan] ! ! [Ecslice ¥ X 46n] |

. i

|
| [Ecslice 11242 !
»

interface 38

computing
core 26

Lidd
ECslice 1_144z EC slice 1.X 44n DS managing
DSN interface 32 I e I e unit 18
EC slice Y_1 462 EC slice Y_X 460
computing I |
core 26 } LN] }
i [[osunit36 DS unit36 |
storage integrity | | computing system 1
sl i puting system 10
processing unit 20 | dispersed storage network (DSN) memory 22 |

US 9,411,818 B2

Page 2
(56) References Cited 2005/0210055 Al* 9/2005 Rogersetal. 707/101
2005/0210076 Al* 9/2005 Rogersetal. 707/200
U.S. PATENT DOCUMENTS 2008/0209025 Al* 82008 Agetsumaetal. ... 709/223
2008/0263222 Al* 10/2008 Matsuzawa et al. 709/238
6,886,160 B1* 4/2005 Leecccccovvviiiviinnnne 717173 2009/0024752 Al* 1/2009 Shitomiccccocevvvenenne 709/230
2001/0014892 Al* 82001 Gaither et al. 707/200

2003/0033308 Al* 2/2003 Pateletal. 707/10 * cited by examiner

US 9,411,818 B2

Sheet 1 of 13

Aug. 9,2016

U.S. Patent

OT WISTSAS 3uUIINdIOD

0z 1un Suissssoud
Ala8a1ul e8elos

1914 9¢g uun sg g Hunsq —
'y e o o x gg 8402
e b4 ___ [Sunndwoo
| 737 XA 20115 53 | | 7 1A 20115 53)
8T uun Y H Y | Z€ soepmu1 Nsa
Auideueu 5 [T x T 2015 03 | [2% 1 1901501 | 0 1
gz 2402 P

Suindwon ~
W| UN.,T_QHC_ > > mv_.ho\su.wc T ﬁmwu__m

_ |||||||||||| 1 _ ||||||||||||

| T | | p— |

| [T97 X A®Ms O3 | | [TPp X Te0s 03 | |

s R

“ “ 1 00® “ ” | [e

| —— I I — I

| [Br 1 Asous03 | | | [BPP 1100503 | |

“ — | “ | [X X]

| UZy Aluswgss eleq | | B2y Tusw3as eleq _

I e e e e —— [I e e e e —— YY)

TE 30BHSIUI NSQ
A
[ofC el INE LI = _ 0 2oep31UI _ _mmumtmzc_ Zmn__

9z 2402
Suinndwon

T 2o1A9p J9sn

07 103[qo e1ep

i

i

_ $E Suissasoud 5Q _

g7 2402 Suiindwod

9T 1un Suissazoud sg

A 4

Sa

¥< Suissanoud

97 2402 8u1ln

dwod

7T a2IA3p J

a5n

US 9,411,818 B2

Sheet 2 of 13

Aug. 9,2016

y
T 1un 3uissasoad
soiydeJ3 oapia

U.S. Patent

I
I
I
9/ a|hpow 7 3|npow ZZ 3Inpow 20e431ul 0Z 3|npow g9 s|npow 99 s|npow |
|90B 91Ul NS aoea1ul aH ysey} 90EJJ21UI JJOMIBU 0B LI91UI YEH 0Bl SN _
y W A A y A A _
| I
| I
4 I
|
| YVVY VYV |
| I
! 85 SoepIdI Dd 795019 !
| I
| A WOH |
| A I
| I
| y A - I
| — — 79 9|npow |
I G J9]|0J1u0d 09 @2epo1ul |
| ol < > ol < oeja1u| |
“ IAIP O _
y
| I
| I
“ : _
I
I 75 Aowsw | 7GJsjosuod | 0§ 9|npow I
“ ulew d Aowsw bl Suissenoud _
| I
| I
| I
| I
| I
| I
| I
| I
| I
| I
|

US 9,411,818 B2

Sheet 3 of 13

Aug. 9,2016

U.S. Patent

TIF X A 92I|5 elep papod IoLID

€ 'O

BIF T A O2I|S B1Ep papo3 JOLID

aweu adl[§

Uzy Aluawdas eleq

BZY T1uswdos eleq

aweu 32|
[J
e
®
UpF X T 921|S ejep papod JoLId
dweu 32|
sweu eleq | asas | us8ynep | alynea | xspulsoys
214153ds uolleWJou| SUIINOY |BSIBAIU
Wnea ! JU| SUNOY | un
7€ aweu 3|[S
fm—————m—————— pmmmm -
_ !]
_ ugy ! " upy
! X Addlseiepdd| [| X T 321s e1ep 33
| I
_ aweu 921 | “ aweu 32I[S
|
_ ° I _ ®
_ ° I _ °
_ . ! " .
_ i | o600 77
! T A=oyselepdI| ! T T 9015 e3ep D3
|
_ Sweu IS | " Sweu 30l
|
I I
I ! I

UZy A Juaw3as ejep

BZY T Waw3as ejep

0% 13lqo elep

GE BWEeU 32JNn0S

GE SWeu 32Jn0S

al 9y _ Asal _ uag ynep | qjinea

GE aWeU 824N0S

_ 3oe}491uUl NSA

h

A 4

78 s|npow pu3

A

A 4

08 °|npow ssadoe

A

y

87 s|npow Aemaled

F<€ sinpow 8uissadold sg

o/

_ 78 s|npow s3e101s _

Interface 30

BYR T T 21|S eiep papod Jodid

P aweu 321[§

0% 1alqo
elep
gg aweu
13(q0
eleq

98 ql
Jasn

<«
REEEEE——

US 9,411,818 B2

Sheet 4 of 13

padyselepd3 |*q |“q|q|eq|q| g | «q | 5q | S "DId
€ 2215 B1EP)3 _ ogq _ 92q _ g _ 81q _ viq _ orq _ o _ q _
67 J321|s <
zaouserepl (g [siq [[g [eg | 6q | sq | iq |
Tooserepo3 [%%q [g [oig [og [7ig| 5 | vq | oq |
[“a]eee g | eee[a] eee [|eee['] a]eee[]
T6 1UaW3as e1ep PaPOIUS 4O S1Iq ZE
¥ 'O
r—ee—_————,e—e—— e e—_—,—_—,e—_—_—_e—,e—,e—_—, e —_—,e—_, e, ——————— -

| 78 9|npow pugd

Aug. 9,2016

U.S. Patent

[xoousewepos |

68 Jole|ndivew

-9p 20I|s-3sod

78 491|5-3p

» G J9podep

€g Joje|ndiuew

€7 1un |0J1U0d

-9p 901|s-94d

I
® T8 Jolendiuew | GZ Joieindiuew
. - n =7 n 77 P 4 = .
“ N 901|s-1s0d b L4990 Pl LLIPPOUS € 92|s-a4d
[voouseaep o3 | __
¥6 1usw3as elep papooua _ _ 7606 Ju2w3i3s elep

US 9,411,818 B2

Sheet 5 of 13

Aug. 9,2016

U.S. Patent

| 9}
10 8,y 80lIs
} 3l
10 §5,¢ s
Lol
j08Z 8dlIs
L 3L

05, 8JlIs

4un giun olun ¥ un
sbelols gQ sbelols gq ebelols gq ebelols 3Q
g Jellid Z ‘elid | Jefiid 0 Jellid
72 Mowsaw NS

o

1INBA g# J3sh JO Z 3|1}

A

90Ol

I
— vy —

9Gl val al
_ arnun | Alowspy }INeA L# Jesn
_ abelioig NSQ 101 9|U 10 ¢ Je|id
I
I
| [% | Fra
1 aiun | Aowspy o::mm_, ngm“mm:_
_ sfeiors | Nsa jo | 8|4jo g Jelid
I
I
| =T

9¢l val al
_ arn | Aowsyy JNeA L# Jesn
I sbeioig | NSQ jo 8l4loL leld
I
I
I
I
I
I
I — T

9gl $5l dl

aiun | Aowsyy JneA L3 Jasn
| obeiog | neg [V OO0
|
|
I
|
_ vl 8lqe)
I uoneso] [eaisAyd o)

ssaippe NS [enIA

1IneA g# Jasn Jo T 2y
A‘_I_l
_

\\ Z Vi Bl
£ neaggiesn]
F ageceds 2 |
" sseippe NSQ BNHIA 74 _
i = I UggT Aowsw
_ [ENVIA Uf 1SS
I
|(1301q/214 Ynen) .
_ sleu 82in0g 4
°
A, _
¢ 199[qQ eleg Jojz 3|y
T 109[qQ e1eQ 404 T O “
iz _
] L# 8l
|« JneA |L#1asn _
[« Joj aoeds um
[« sseippe NSQ [enkiA % I
R R N _ ﬂ\/_‘_OEwE
8yl aoeds | [BAMIA |# 8BS
I

S$SaIppe NS [2NHIA

US 9,411,818 B2

Sheet 6 of 13

Allg. 9, 2016

U.S. Patent

00

e AMowsw

0ZZ o

[euJa1xa

Mmlau

[BUISIXD
y X I
OF =2eB1Y| 7€ 2oepoM|
NSa
X 0
Ve
< _ | Buissacoug
- 5q
8Tz uidn|d
0TZ SO SuIssa0044
sd
ZT¢ weidoud
«—> CO_HNU__QQ< N 357
80T Jesmoug N9
ﬁ 30IA8(Q 195N

L9l

72 Mowsw (NSQ) y4oMmiau 98elols passadsip

e & o

A

A

»| OF sdepB1U| ZE 22epauUl
NSQa
A
ZTe wedsoud
) uonealddy
A
¥Tc u-8nid
uoljeolddy
7€
| | 8uissadoud v
sa [o
30¢ Jasmolg N9

BZT 321A3Q J8sN

US 9,411,818 B2

Sheet 7 of 13

Aug. 9,2016

U.S. Patent

6 "OId

04T
Jaljiauap| adAL aji4

89¢ 99¢ ¥9¢
aweN 123[qQ eleq | ssaJIppY NSA [ENHIA | @] HNEA

79T dALIP [BJ0]/SS2IPPY
dl/aweN ulewoq

9 oWeu 9|14

)74

8 'Ol
Aowaw
—
8¢ NSQ 241 wodj 193[qo e1ep anali1ay
109[qO e1eQ oY1 40}
9&\ ssaJppe NSQ |eNUIA B 3uUlwi1aQ
Alowsw NSQ 2y1 se 13(qo
vvm\ e1ep a2yl JO UOI1eJ0| B SUIWIS13Q
» Jasmolq
474 e Aq 103[qQ e1eq e jo awepN

3|14 YUM puBWIWOD 3|14 AISIDY

US 9,411,818 B2

Sheet 8 of 13

Aug. 9,2016

U.S. Patent

uoI1ed20| JaY10 Wouj
193[qQO e1eQ ansLIIBY

¢ uoneso
LYo

TT 'Sl

Alows|N NSQ wouy 103[qo
e1ep SA314134 01 S|NPO
3uissanoud sq 1sanbay

- A

A

90¢
¢Aowsy NSQ
N
0
13[qo
_ eleq UPO co_pmuo_ mc_ctwpw_o

01 swWep 3|14 ss320.d

*

00¢

0T 'Sl

Jaiyipuapl odAy 914 e wolj uado
01 weJ3doud voneddde sulwialaq

-
88¢ »
puewwo) 9|14
9Y3 Ul J31413USpI Ue wody 3|1} usado
©wm.\ 03} weJidoud uoiedijdde sulwialaqg
weJdoud uonjesydde
ue yum 123lqQO ejeq uado
~
$8¢ 01 Sl pueWIWO) 3|I4 BUIWJIS13Q
123[qQ e3leq e jo swep
Nwm\ 914 Y1M puBLUIWOD 3|14 SAIIDY
/
08¢

U.S. Patent Aug. 9,2016 Sheet 9 of 13 US 9,411,818 B2

318
-~
320
Determine a Virtual DSN address [~
for the Data Object
332
N .
Stream Data Object?
\ 4
336 Identify a next sequential data 324
; l—
Reconstruct plurality of dat? segment of a data object to -
segments to generate data object produce an identified data <
¢ segment
- 338 ¢

Complete download of data object

Retrieve at least a number T of the | 326
plurality of encoded data slices for
the identified data segment

v

Reconstruct identified data 328
segment to produce a
reconstructed data segment

v

Provide reconstructed data /.330
segment to MM platform

Additional Data
Segments?

334
End streaming of Data Object

FIG. 12

US 9,411,818 B2

Sheet 10 of 13

Aug. 9,2016

U.S. Patent

ore

¥z AMowauw
|BUIDIXD

0Z¢ YJomiau
|eulaixa

_ 0O @2epi91u| _ _mwumtwuc_ NSQ _

i ¥

¥<€ 8uissanoud sg

9T Hun 8uissasoad sq

A

A4

gT¢ u18n|d 8uissanoud sa

Z1¢ weidolid uoilednddy

¥Tc u-8n|d
uoneslddy

80¢ J3smoug

30¢
NS

¥T 221A9Q 495N

€T 'Old

9¢ Hunsag
K A
||||||||||||||| I
¥ v
— ZE€ soe Ul
9oBLIBIU
0¢ 9284 I NSQ
A A
A 4
2
¥E
Buissanold
nEg sa
0TZ SO TT¢ WeJdoud uojzen|ddy
[
¥z ui-3nd A
R uoizedddy 507
«> nid
20 Jasmo.g NS

T 221A8Q J3sn

US 9,411,818 B2

Sheet 11 of 13

Aug. 9,2016

U.S. Patent

05¢

¥1 "5l

—]

09¢

Ae|dsip 40} 103[qo elep ssa20.d

1

8G¢

Alowaw
NSQ 9Y31 woJj} 103[qo e1ep ana1ay

1

96¢

109[qO e1eQ 3Y1 40}
ssaJppe NS |enUIA B 3UIWJ919Q

9

vGe

Alowsw NS 9y1 se 13lqo
e1ep 9y1 JO UOI1BJ0| B 3UIWJB1SQ

)

¢se

109[qO e1eQ e Jo swepN
3|14 Yyum puewwod uado aAIa29Y

US 9,411,818 B2

Sheet 12 of 13

Aug. 9,2016

U.S. Patent

ST 'OId

e Aowaw 0T¢ J410MI8U |BUISIXD

eHungg . _ 9g 1un s@ _

|eula1xe + Y
Y A A \ 4 Y v
__ ZE aoejlaqul _ ZE 22epaiul
ERIBEMY] ERLINEMT]
0€g =08y}, I NSO Og =@2e} | NSO
A A A A
\ 4
<€ A 4 \ 4
B ?1 8uissatold guissasoud
sd nig sd
_ — ZT¢ weis8oud uoneoidd
0TZ SO 012 SO TC d uonedljdady
Z1¢ wesSod ans _ —
<«—> Nr_ﬂnw;mu__aa% o 2% < 3 90¢
RS N5 <« » Ino
€y 7OV 2RI [l oo «> TFovseide [o
|ul] puewIlioy UIT PUBWWOD
-/
00y PETT 921A8Q J8sN JCT I2A3Q 495N

US 9,411,818 B2

Sheet 13 of 13

Aug. 9,2016

U.S. Patent

LT 'Old

09¥

Ae|dsip Joj 11 sse20ud
pue 123[qo ejep ay3 9AI9I3l 0}
weJ3oud uonesidde syl 3ssnbay

1

8G¥

weJs3oud uonesidde
93 Joj 199[qo elep ay3 aA31413d
01 3|npow 3uissadoud NSQ 1sanbay

%

9%y

SWEU o[} oy}
uo paseq AJowaw NSQ B Ul paJols
s1103[qo elep ay3 18y} 90e4d3UI
3Ul] pueW WO 3y} AQ 3UIWI13Q

1414

414

0S¥y

i)

103(qo eiep
9y3 uado 031 wei3doud uoliledjdde
ue youne| 01 puewwod 1a.4dJiau|

1

CRIANENV]]
dul| puewwod e Ag 103[qo elep e
Ae|dsip 01 puewIWOD 3|1} B SAISIDY

Oly

91 'Sl

8¢y

Ae|dsip 40} 11 sassad0ud pue 1o3[qo
el1ep Syl Wouj elep 3|1} SAI9IY

1

9cy

109[qo eilep ayl snsiilal
01 3|hpow 3uissadold sq 1sanbay

)

vey

sweu 3|1} ay1
uo paseq AJowaw NSQ e Ul paJols
s1103[qo e1ep syl auIwWIS1RQ

1

4 ol

103(qo eiep
oY1 Ae|dsip 01 wesdoid uoiledjdde
ue youne| 0} puewwod 1a4diau|

1

0cy

CRIANEMT]
dul| puewwod e Ag 103[qo elep e
Ae|dsip 01 puewIWOD 3|1} B DAY

US 9,411,818 B2

1
COMMAND LINE INTERPRETER FOR
ACCESSING A DATA OBJECT STORED IN A
DISTRIBUTED STORAGE NETWORK

CROSS-REFERENCE TO RELATED PATENTS

The present U.S. Utility Patent Application claims priority
pursuant to 35 U.S.C. §120 as a continuation of U.S. Utility
application Ser. No. 12/839,209, entitled “COMMAND
LINE INTERPRETER FOR ACCESSING A DATA
OBJECT STORED IN A DISTRIBUTED STORAGE NET-
WORK?, filed Jul. 19, 2010, which claims priority pursuant
to 35 U.S.C. §119(e) to U.S. Provisional Application No.
61/256,436 entitled “DISTRIBUTED STORAGE NET-
WORK ACCESS;” filed Oct. 30, 2009, pending, which is
incorporated by reference herein in its entirety and made part
of'the present U.S. Utility Patent Application for all purposes.

U.S. Utility patent application Ser. No. 12/839,209 claims
priority pursuant to 35 U.S.C. §120 as a continuation-in-part
of U.S. Utility application Ser. No. 12/218,594 entitled,
“STREAMING MEDIA SOFTWARE INTERFACE TO A
DISPERSED DATA STORAGE NETWORK,” which is
incorporated by reference herein in its entirety and made part
of'the present U.S. Utility Patent Application for all purposes.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

Not applicable.

INCORPORATION-BY-REFERENCE OF
MATERIAL SUBMITTED ON A COMPACT DISC

Not applicable.
BACKGROUND OF THE INVENTION

1. Technical Field of the Invention

This invention relates generally to computing systems and
more particularly to data storage within such computing sys-
tems.

2. Description of Related Art

Computers are known to communicate, process, and store
data. Such computers range from wireless smart phones to
data centers that support millions of web searches, stock
trades, or on-line purchases every day. In general, a comput-
ing system generates data and/or manipulates data from one
form into another. For instance, an image sensor of the com-
puting system generates raw picture data and using an image
compression program (e.g., JPEG, MPEG, etc.), the comput-
ing system manipulates the raw picture data into a standard-
ized compressed image.

With continued advances in processing speed and commu-
nication speed, computers are capable of processing real time
multimedia data for applications ranging from simple voice
communications to streaming high definition video. As such,
general-purpose information appliances are replacing pur-
pose-built communications devices (e.g., a telephone). For
example, smart phones can support telephony communica-
tions but they are also capable of text messaging and access-
ing the internet to perform functions including email, web
browsing, remote applications access, and media communi-
cations (e.g., telephony voice, image transfer, music files,
video files, real time video streaming, etc.).

Eachtype of computer is constructed and operates in accor-
dance with one or more communication, processing, and
storage standards. As a result of standardization and with

10

15

20

25

30

35

40

45

50

55

60

65

2

advances in technology, more and more information content
is being converted into digital formats. For example, more
digital cameras are now being sold than film cameras, thus
producing more digital pictures. As another example, web-
based programming is becoming an alternative to over the air
television broadcasts and/or cable broadcasts. As further
examples, papers, books, video entertainment, home video,
etc. are now being stored digitally. This increased storage of
information content increases the demand on the storage
function of computers.

A typical computer storage system includes one or more
memory devices aligned with the needs of the various opera-
tional aspects of the computer’s processing and communica-
tion functions. Generally, the immediacy of access dictates
what type of memory device is used. For example, random
access memory (RAM) memory can be accessed in any ran-
dom order with a constant response time, thus it is typically
used for cache memory and main memory. By contrast,
memory device technologies that require physical movement
such as magnetic disks, tapes, and optical discs, have a vari-
able response time as the physical movement can take longer
than the data transfer, thus they are typically used for second-
ary memory (e.g., hard drive, backup memory, etc.).

A computer’s storage system will be compliant with one or
more computer storage standards that include, but are not
limited to, network file system (NFS), flash file system (FFS),
disk file system (DFS), small computer system interface
(SCSI), internet small computer system interface (iSCSI), file
transfer protocol (FTP), and web-based distributed authoring
and versioning (WebDAV). These standards specify the data
storage format (e.g., files, data objects, data blocks, directo-
ries, etc.) and interfacing between the computer’s processing
function and its storage system, which is a primary function
of the computer’s memory controller.

Despite the standardization of the computer and its storage
system, memory devices fail; especially commercial grade
memory devices that utilize technologies incorporating
physical movement (e.g., a disc drive). For example, it is
fairly common for a disc drive to routinely suffer from bit
level corruption and to completely fail after three years of use.
One solution is to utilize a higher-grade disc drive, which
adds significant cost to a computer.

Another solution is to utilize multiple levels of redundant
disc drives to replicate the data into two or more copies. One
such redundant drive approach is called redundant array of
independent discs (RAID). In a RAID device, a RAID con-
troller adds parity data to the original data before storing it
across the array. The parity data is calculated from the original
data such that the failure of a disc will not result in the loss of
the original data. For example, RAID 5 uses three discs to
protect data from the failure of a single disc. The parity data,
and associated redundancy overhead data, reduces the storage
capacity of three independent discs by one third (e.g., n-1=ca-
pacity). RAID 6 can recover from a loss of two discs and
requires a minimum of four discs with a storage capacity of
n-2.

While RAID addresses the memory device failure issue, it
is not without its own failure issues that affect its effective-
ness, efficiency and security. For instance, as more discs are
added to the array, the probability of a disc failure increases,
which increases the demand for maintenance. For example,
when a disc fails, it needs to be manually replaced before
another disc fails and the data stored in the RAID device is
lost. To reduce the risk of data loss, data on a RAID device is
typically copied on to one or more other RAID devices. While
this addresses the loss of data issue, it raises a security issue
since multiple copies of data are available, which increases

US 9,411,818 B2

3

the chances of unauthorized access. Further, as the amount of
data being stored grows, the overhead of RAID devices
becomes a non-trivial efficiency issue.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWING(S)

FIG. 1 is a schematic block diagram of an embodiment of
a computing system in accordance with the invention;

FIG. 2 is a schematic block diagram of an embodiment of
a computing core in accordance with the invention;

FIG. 3 is a schematic block diagram of an embodiment of
a distributed storage processing unit in accordance with the
invention;

FIG. 4 is a schematic block diagram of an embodiment of
a grid module in accordance with the invention;

FIG. 5 is a diagram of an example embodiment of error
coded data slice creation in accordance with the invention;

FIG. 6 is a schematic block diagram of an embodiment of
a file system hierarchy in accordance with the invention;

FIG. 7 is a schematic block diagram of an embodiment of
a computer system operable to retrieve a data object from a
DSN memory in accordance with the invention;

FIG. 8 is a logic flow diagram of an embodiment of a
method for retrieving a data object from a DSN memory in
accordance with the invention;

FIG. 9 is a schematic block diagram of an embodiment of
a file name in accordance with the invention;

FIG. 10 s alogic flow diagram of a method for interpreting
afile command to open a data object stored in a DSN memory
in accordance with the invention;

FIG. 11 is a logic flow diagram of an embodiment of a
method for determining a location of a data object in response
to a file command in accordance with the invention;

FIG. 12 is a logic flow diagram of an embodiment of a
method for retrieving a data object from the DSN memory in
accordance with the invention;

FIG. 13 is a schematic block diagram of another embodi-
ment of a computer system to retrieve a data object from a
DSN memory in accordance with the invention;

FIG. 14 is a logic flow diagram of another embodiment of
a method for retrieving a data object from a DSN memory in
accordance with the invention;

FIG. 15 is a schematic block diagram of another embodi-
ment of a computer system to retrieve a data object from a
DSN memory in accordance with the invention;

FIG. 16 is a logic flow diagram of another embodiment of
a method for retrieving a data object from a DSN memory in
accordance with the invention; and

FIG. 17 is a logic flow diagram of another embodiment of
a method for retrieving a data object from a DSN memory in
accordance with the invention.

DETAILED DESCRIPTION OF THE INVENTION

FIG. 1is a schematic block diagram of a computing system
10 that includes one or more of a first type of user devices 12,
one or more of a second type of user devices 14, at least one
distributed storage (DS) processing unit 16, at least one DS
managing unit 18, at least one storage integrity processing
unit 20, and a distributed storage network (DSN) memory 22
coupled via a network 24. The network 24 may include one or
more wireless and/or wire lined communication systems; one
or more private intranet systems and/or public internet sys-
tems; and/or one or more local area networks (LAN) and/or
wide area networks (WAN).

10

15

20

25

30

35

40

45

50

55

60

65

4

The DSN memory 22 includes a plurality of distributed
storage (DS) units 36 for storing data of the system. Each of
the DS units 36 includes a processing module and memory
and may be located at a geographically different site than the
other DS units (e.g., one in Chicago, one in Milwaukee, etc.).
The processing module may be a single processing device or
a plurality of processing devices. Such a processing device
may be a microprocessor, micro-controller, digital signal pro-
cessor, microcomputer, central processing unit, field pro-
grammable gate array, programmable logic device, state
machine, logic circuitry, analog circuitry, digital circuitry,
and/or any device that manipulates signals (analog and/or
digital) based on hard coding of the circuitry and/or opera-
tional instructions. The processing module may have an asso-
ciated memory and/or memory element, which may be a
single memory device, a plurality of memory devices, and/or
embedded circuitry of the processing module. Such a
memory device may be a read-only memory, random access
memory, volatile memory, non-volatile memory, static
memory, dynamic memory, flash memory, cache memory,
and/or any device that stores digital information. Note that if
the processing module includes more than one processing
device, the processing devices may be centrally located (e.g.,
directly coupled together via a wired and/or wireless bus
structure) or may be distributedly located (e.g., cloud com-
puting via indirect coupling via a local area network and/or a
wide area network). Further note that when the processing
module implements one or more of its functions via a state
machine, analog circuitry, digital circuitry, and/or logic cir-
cuitry, the memory and/or memory element storing the cor-
responding operational instructions may be embedded
within, or external to, the circuitry comprising the state
machine, analog circuitry, digital circuitry, and/or logic cir-
cuitry. Still further note that, the memory element stores, and
the processing module executes, hard coded and/or opera-
tional instructions corresponding to at least some of the steps
and/or functions illustrated in FIGS. 1-15.

Each ofthe user devices 12-14, the DS processing unit 16,
the DS managing unit 18, and the storage integrity processing
unit 20 may be a portable computing device (e.g., a social
networking device, a gaming device, a cell phone, a smart
phone, a personal digital assistant, a digital music player, a
digital video player, a laptop computer, a handheld computer,
avideo game controller, and/or any other portable device that
includes a computing core) and/or a fixed computing device
(e.g., a personal computer, a computer server, a cable set-top
box, a satellite receiver, a television set, a printer, a fax
machine, home entertainment equipment, a video game con-
sole, and/or any type of home or office computing equip-
ment). Such a portable or fixed computing device includes a
computing core 26 and one or more interfaces 30, 32, and/or
38. An embodiment of the computing core 26 will be
described with reference to FIG. 2.

With respect to the interfaces, each of the interfaces 30, 32,
and 38 includes software and/or hardware to support one or
more communication links via the network 24 and/or directly.
For example, interface 30 supports a communication link
(wired, wireless, direct, via a LAN, via the network 24, etc.)
between the first type of user device 14 and the DS processing
unit 16. As another example, DSN interface 32 supports a
plurality of communication links via the network 24 between
the DSN memory 22 and the DS processing unit 16, the first
type of user device 12, and/or the storage integrity processing
unit 20. As yet another example, interface 38 supports a
communication link between the DS managing unit 18 and
any one of the other devices and/or units 12, 14, 16, 20, and/or
22 via the network 24.

US 9,411,818 B2

5

In general and with respect to data storage, the system 10
supports three primary functions: distributed network data
storage management, distributed data storage and retrieval,
and data storage integrity verification. In accordance with
these three primary functions, data can be distributedly stored
in a plurality of physically different locations and subse-
quently retrieved in a reliable and secure manner regardless of
failures of individual storage devices, failures of network
equipment, the duration of storage, the amount of data being
stored, attempts at hacking the data, etc.

The DS managing unit 18 performs distributed network
data storage management functions, which include establish-
ing distributed data storage parameters, performing network
operations, performing network administration, and/or per-
forming network maintenance. The DS managing unit 18
establishes the distributed data storage parameters (e.g., allo-
cation of virtual DSN memory space, distributed storage
parameters, security parameters, billing information, user
profile information, etc.) for one or more of the user devices
12-14 (e.g., established for individual devices, established for
a user group of devices, established for public access by the
user devices, etc.). For example, the DS managing unit 18
coordinates the creation of a vault (e.g., a virtual memory
block) within the DSN memory 22 for a user device (for a
group of devices, or for public access). The DS managing unit
18 also determines the distributed data storage parameters for
the vault. In particular, the DS managing unit 18 determines a
number of slices (e.g., the number that a data segment of a
data file and/or data block is partitioned into for distributed
storage) and a read threshold value (e.g., the minimum num-
ber of slices required to reconstruct the data segment).

As another example, the DS managing module 18 creates
and stores, locally or within the DSN memory 22, user profile
information. The user profile information includes one or
more of authentication information, permissions, and/or the
security parameters. The security parameters may include
one or more of encryption/decryption scheme, one or more
encryption keys, key generation scheme, and data encoding/
decoding scheme.

As yet another example, the DS managing unit 18 creates
billing information for a particular user, user group, vault
access, public vault access, etc. For instance, the DS manag-
ing unit 18 tracks the number of times a user accesses a private
vault and/or public vaults, which can be used to generate a
per-access bill. In another instance, the DS managing unit 18
tracks the amount of data stored and/or retrieved by a user
device and/or a user group, which can be used to generate a
per-data-amount bill.

The DS managing unit 18 also performs network opera-
tions, network administration, and/or network maintenance.
As at least part of performing the network operations and/or
administration, the DS managing unit 18 monitors perfor-
mance of the devices and/or units of the system 10 for poten-
tial failures, determines the devices” and/or units’ activation
status, determines the devices’ and/or units’ loading, and any
other system level operation that affects the performance
level of the system 10. For example, the DS managing unit 18
receives and aggregates network management alarms, alerts,
errors, status information, performance information, and
messages from the devices 12-14 and/or the units 16, 20, 22.
For example, the DS managing unit 18 receives a simple
network management protocol (SNMP) message regarding
the status of the DS processing unit 16.

The DS managing unit 18 performs the network mainte-
nance by identifying equipment within the system 10 that
needs replacing, upgrading, repairing, and/or expanding. For

10

15

20

25

30

35

40

45

50

55

60

65

6

example, the DS managing unit 18 determines that the DSN
memory 22 needs more DS units 36 or that one or more of the
DS units 36 needs updating.

The second primary function (i.e., distributed data storage
and retrieval) begins and ends with a user device 12-14. For
instance, if a second type of user device 14 has a data object
40, such as a data file and/or data block, to store in the DSN
memory 22, it sends the data object 40 to the DS processing
unit 16 via its interface 30. As will be described in greater
detail with reference to FIG. 2, the interface 30 functions to
mimic a conventional operating system (OS) file system
interface (e.g., network file system (NFS), flash file system
(FFS), disk file system (DFS), file transfer protocol (FTP),
web-based distributed authoring and versioning (WebDAV),
etc.) and/or a block memory interface (e.g., small computer
system interface (SCSI), internet small computer system
interface (iSCSI), etc.). In addition, the interface 30 may
attach a user identification code (ID) to the data object 40.

The DS processing unit 16 receives the data object 40 via
its interface 30 and performs a distributed storage (DS) pro-
cess 34 thereon (e.g., an error coding dispersal storage func-
tion). The DS processing 34 begins by partitioning the data
object 40 into one or more data segments, which is repre-
sented as Y data segments. The DS processing 34 may parti-
tion the data object 40 into fixed byte size segments (e.g., 21
to 2n bytes, where n=>2) or variable byte size segments (e.g.,
change byte size from segment to segment, or from groups of
segments to groups of segments, etc.).

For example, in FIG. 1 for each of the Y number of data
segments 42a-n, the DS processing 34 error encodes (e.g.,
forward error correction (FEC), information dispersal algo-
rithm, or error correction coding) and slices (or slices then
error encodes) the data segments 42a-r into a plurality of
error coded (EC) data slices 42a-42r and 46a-467, which are
represented as X slices per data segment. The number of
slices (X) per segment, which corresponds to a number of
pillars n, is set in accordance with the distributed data storage
parameters and the error coding scheme. For example, if a
Reed-Solomon (or other FEC scheme) is used in an X/T
system, then a data segment is divided into X number of
slices, where T number of slices are needed to reconstruct the
original data (i.e.,, T is the threshold). As a few specific
examples, the X/T factor may be 5/3; 6/4; 8/6; 8/5; 16/10.

For each slice 44a-r and 46a-n, the DS processing unit 16
creates a unique slice name and appends it to the correspond-
ing slice. The slice name includes universal DSN memory
addressing routing information (e.g., virtual memory
addresses in the DSN memory 22) and user-specific informa-
tion (e.g., user ID, file name, data block identifier, etc.).

The DS processing unit 16 transmits the plurality of EC
slices 44a-n and 46a-n to a plurality of DS units 36 of the DSN
memory 22 via the DSN interface 32 and the network 24. The
DSN interface 32 formats each of the slices for transmission
via the network 24. For example, the DSN interface 32 may
utilize an internet protocol (e.g., TCP/IP, etc.) to packetize the
slices 44a-n and 46a-n for transmission via the network 24.

The number of DS units 36 receiving the slices 44a-» and
46a-n is dependent on the distributed data storage parameters
established by the DS managing unit 18. For example, the DS
managing unit 18 may indicate that each slice is to be stored
in a different DS unit 36. As another example, the DS man-
aging unit 18 may indicate that like slice numbers of different
data segments are to be stored in the same DS unit 36. For
example, the first slice 44a and 46a of each of the data
segments 42a-n is to be stored in a first DS unit 36, the second
slice 445 and 464 of each of the data segments 42a-7 is to be
stored in a second DS unit 36, etc. In this manner, the data is

US 9,411,818 B2

7

encoded and distributedly stored at physically diverse loca-
tions to improve data storage integrity and security. Further
examples of encoding the data segments will be provided
with reference to one or more of FIGS. 2-15.

Each DS unit 36 that receives a slice for storage translates
the virtual DSN memory address of the slice into a local
physical address for storage. Accordingly, each DS unit 36
maintains a virtual to physical memory mapping to assist in
the storage and retrieval of data.

The first type of user device 12 performs a similar function
to store data in the DSN memory 22 with the exception that it
includes the DS processing. As such, the device 12 encodes
and slices the data file and/or data block it has to store. The
device then transmits the slices 11 to the DSN memory via its
DSN interface 32 and the network 24.

For a second type of user device 14 to retrieve a data file or
data block from memory, it issues a read command via its
interface 30 to the DS processing unit 16. The DS processing
unit 16 performs the DS processing 34 to identify the DS units
36 storing the slices of the data file and/or data block based on
the read command. The DS processing unit 16 may also
communicate with the DS managing unit 18 to verify that the
user device 14 is authorized to access the requested data.

Assuming that the user device is authorized to access the
requested data, the DS processing unit 16 issues slice read
commands to at least a threshold number of the DS units 36
storing the requested data (e.g., to at least 10 DS units for a
16/10error coding scheme). Each of the DS units 36 receiving
the slice read command, verifies the command, accesses its
virtual to physical memory mapping, retrieves the requested
slice, or slices, and transmits it to the DS processing unit 16.

Once the DS processing unit 16 has received a read thresh-
old number of slices for a data segment, it performs an error
decoding function and de-slicing to reconstruct the data seg-
ment. When Y number of data segments has been recon-
structed, the DS processing unit 16 provides data object 40 to
the user device 14. Note that the first type of user device 12
performs a similar process to retrieve data object 40.

The storage integrity processing unit 20 performs the third
primary function of data storage integrity verification. In
general, the storage integrity processing unit 20 periodically
retrieves slices 48, and/or slice names, of a data object 40 to
verify that one or more slices have not been corrupted or lost
(e.g., the DS unit failed). The retrieval process mimics the
read process previously described.

If the storage integrity processing unit 20 determines that
one or more slices 48 is corrupted or lost, it rebuilds the
corrupted or lost slice(s) in accordance with the error coding
scheme. The storage integrity processing unit 20 stores the
rebuilt slice, or slices, in the appropriate DS unit(s) 36 in a
manner that mimics the write process previously described.

FIG. 2 is a schematic block diagram of an embodiment of
a computing core 26 that includes a processing module 50, a
memory controller 52, main memory 54, a video graphics
processing unit 55, an input/output (IO) controller 56, a
peripheral component interconnect (PCI) interface 58, atleast
one 10 interface 60, IO device interface module 62, a read
only memory (ROM) basic input output system (BIOS) 64,
and one or more memory interface modules. The memory
interface module(s) includes one or more of a universal serial
bus (USB) interface module 66, a host bus adapter (HBA)
interface module 68, a network interface module 70, a flash
interface module 72, a hard drive interface module 74, and a
DSN interface module 76. Note the DSN interface module 76
and/or the network interface module 70 may function as the
interface 30 of the user device 14 of FIG. 1. Further note that

10

15

20

25

30

35

40

45

50

55

60

65

8

the 10 device interface module 62 and/or the memory inter-
face modules may be collectively or individually referred to
as 10 ports.

The processing module 50 may be a single processing
device or a plurality of processing devices. Such a processing
device may be a microprocessor, micro-controller, digital
signal processor, microcomputer, central processing unit,
field programmable gate array, programmable logic device,
state machine, logic circuitry, analog circuitry, digital cir-
cuitry, and/or any device that manipulates signals (analog
and/or digital) based on hard coding of the circuitry and/or
operational instructions. The processing module 50 may have
anassociated memory and/or memory element, which may be
a single memory device, a plurality of memory devices, and/
or embedded circuitry of the processing module 50. Such a
memory device may be a read-only memory, random access
memory, volatile memory, non-volatile memory, static
memory, dynamic memory, flash memory, cache memory,
and/or any device that stores digital information. Note that if
the processing module 50 includes more than one processing
device, the processing devices may be centrally located (e.g.,
directly coupled together via a wired and/or wireless bus
structure) or may be distributedly located (e.g., cloud com-
puting via indirect coupling via a local area network and/or a
wide area network). Further note that when the processing
module 50 implements one or more of'its functions via a state
machine, analog circuitry, digital circuitry, and/or logic cir-
cuitry, the memory and/or memory element storing the cor-
responding operational instructions may be embedded
within, or external to, the circuitry comprising the state
machine, analog circuitry, digital circuitry, and/or logic cir-
cuitry. Still further note that, the memory element stores, and
the processing module 50 executes, hard coded and/or opera-
tional instructions corresponding to at least some of the steps
and/or functions illustrated in FIGS. 1-15.

FIG. 3 is a schematic block diagram of an embodiment of
adispersed storage (DS) processing module 34 of user device
12 and/or of the DS processing unit 16. The DS processing
module 34 includes a gateway module 78, an access module
80, a grid module 82, and a storage module 84. The DS
processing module 34 may also include an interface 30 and
DSN interface 32 or the interfaces 30 and/or 32 may be part of
user 12 or of the DS processing unit 14. The DS processing
module 34 may further include a bypass/feedback path
between the storage module 84 to the gateway module 78.
Note that the modules 78-84 of the DS processing module 34
may be in a single unit or distributed across multiple units.

In an example of storing data, the gateway module 78
receives an incoming request with a data object 40. The
incoming request may also include a user ID field 86, a data
object name field 88 and other corresponding information
such as a process identifier (e.g., an internal process/applica-
tion ID), metadata, a file system directory, a block number, a
transaction message, a user device identity (ID), a data object
identifier, a source name, and/or user information. The gate-
way module 78 authenticates the user associated with the data
object by verifying the user ID 86 with the managing unit 18
and/or another authenticating unit.

When the user is authenticated, the gateway module 78
obtains user information from the management unit 18, the
user device 12-14, and/or the other authenticating unit. The
user information includes a vault identifier, operational
parameters, and user attributes (e.g., user data, billing infor-
mation, etc.). A vault identifier identifies a vault, which is a
virtual memory space that maps to a set of DS storage units
36. For example, vault 1 (i.e., user 1’s DSN memory space)
includes eight DS storage units (X=8 wide) and vault 2 (i.e.,

US 9,411,818 B2

9

user 2°s DSN memory space) includes sixteen DS storage
units (X=16 wide). The operational parameters may include
an error coding algorithm, the width n (number of pillars X or
slices per segment for this vault), a read threshold T, a write
threshold, an encryption algorithm, a slicing parameter, a
compression algorithm, an integrity check method, caching
settings, parallelism settings, and/or other parameters that
may be used to access the DSN memory layer.

The gateway module 78 uses the user information to assign
a source name 35 to the data object 40. For instance, the
gateway module 78 determines the source name 35 of the data
object 40 based on the vault identifier and the data object 40.
For example, the source name may contain a file identifier
(ID), a vault generation number, a reserved field, and a vault
identifier (ID). As another example, the gateway module 78
may generate the file ID based on a hash function of the data
object 40. Note that the gateway module 78 may also perform
message conversion, protocol conversion, electrical conver-
sion, optical conversion, access control, user identification,
user information retrieval, traffic monitoring, statistics gen-
eration, configuration, management, and/or source name
determination.

The access module 80 receives the data object 40 and
creates a plurality of data segments 1 through Y 42a-z in
accordance with a data storage protocol (e.g., file storage
system, a block storage system, and/or an aggregated block
storage system). The numberY of data segments may be fixed
with a segment size depending on the data object size or the
number of segments may vary with a fixed segment size. For
example, when the number Y of segments is chosen to be a
fixed number, then the size of the segments varies as a func-
tion of the size of the data object. For instance, if the data
object is an image file of 4,194,304 eight bit bytes (e.g.,
33,554,432 bits) and the number of segments Y=131,072,
then each segment is 256 bits or 32 bytes. As another example,
when the segment size is fixed, then the number of segments
Y varies based on the size of data object. For instance, if the
data object is an image file of 4,194,304 bytes and the fixed
segment size of each segment is 4,096 bytes, then the number
of segments Y=1,024. Note that each segment is associated
with the same source name 35.

The grid module 82 receives the Y data segments and may
manipulate (e.g., compression, encryption, cyclic redun-
dancy check (CRC), etc.) each of the data segments before
performing an error coding function of the error coding dis-
persal storage function to produce a pre-manipulated data
segment. After manipulating a data segment, if applicable, the
grid module 82 error encodes (e.g., Reed-Solomon, Convo-
Iution encoding, Trellis encoding, etc.) the data segment or
manipulated data segment into X error coded data slices
42-44.

The value X, or the number of pillars (e.g., X=16), is
chosen as a parameter of the error coding dispersal storage
function. Other parameters of the error coding dispersal func-
tion include a read threshold T, a write threshold W, etc. The
read threshold (e.g., T=10, when X=16) corresponds to the
minimum number of error coded data slices required to
reconstruct the data segment. In other words, the DS process-
ing module 34 can compensate for X-T (e.g., 16-10=6) miss-
ing error coded data slices per data segment. The write thresh-
0ld W corresponds to a minimum number of DS storage units
that acknowledge proper storage of their respective data
slices before the DS processing module indicates proper stor-
age ofthe encoded data segment. Note that the write threshold
W is greater than or equal to the read threshold T (i.e., W=T)
for a given number of pillars (X).

10

15

20

25

30

35

40

45

50

55

60

65

10

For each data slice of a data segment, the grid module 82
generates a unique slice name 37 and attaches it thereto. The
slice name 37 includes a universal routing information field
and a vault specific field and may be 48 bytes (e.g., 24 bytes
for each of the universal routing information field and the
vault specific field). As illustrated, the universal routing infor-
mation field includes a slice index, a vault ID, a vault genera-
tion, and a reserved field. The slice index is based on the pillar
number n and the vault ID and, as such, is unique for each
pillar (e.g., slices of the same pillar for the same vault for any
segment will share the same slice index). The vault specific
field includes a data name, which includes a file ID and a
segment number (e.g., a sequential numbering of data seg-
ments 1-Y of a simple data object or a data block number).

Prior to outputting the error coded data slices of a data
segment, the grid module may perform post-slice manipula-
tion on the slices. If enabled, the manipulation includes slice
level compression, encryption, CRC, addressing, tagging,
and/or other manipulation to improve the effectiveness of the
computing system.

When the error coded (EC) data slices of a data segment are
ready for storage, the grid module 82 determines which of the
DS storage units 36 will store the EC data slices based on a
dispersed storage memory mapping associated with the
user’s vault and/or DS storage unit 36 attributes. The DS
storage unit attributes may include availability, self-selection,
performance history, link speed, link latency, ownership,
available DSN memory, domain, cost, a prioritization
scheme, a centralized selection message from another source,
a lookup table, data ownership, and/or any other factor to
optimize the operation of the computing system. Note that the
number of DS storage units 36 in an embodiment is equal to
or greater than the number of pillars (e.g., X) so that no more
than one error coded data slice of the same data segment is
stored on the same DS storage unit 36. Further note that EC
data slices of the same pillar number but of different segments
(e.g., EC data slice 1 of data segment 1 and EC data slice 1 of
data segment 2) may be stored on the same or different DS
storage units 36.

The storage module 84 performs an integrity check on the
outbound encoded data slices and, when successtul, identifies
aplurality of DS storage units based on information provided
by the grid module. The storage module then outputs the
encoded data slices 1 through X of each segment 1 throughY
to the DS storage units. Each of the DS storage units 36 stores
its EC data slice(s) and maintains a local virtual DSN address
to physical location table to convert the virtual DSN address
of'the EC data slice(s) into physical storage addresses.

In an example of a read operation, the user device 12 and/or
14 sends a read request to the DS processing 34, which
authenticates the request. When the request is authentic, the
DS processing 34 sends a read message to each of the DS
storage units 36 storing slices of the data object being read.
The slices are received via the DSN interface 32 and pro-
cessed by the storage module 84, which performs a parity
check and provides the slices to the grid module 82 when the
parity check is successful. The grid module 82 decodes the
slices in accordance with the error coding dispersal storage
function to reconstruct the data segment. The access module
80 reconstructs the data object from the data segments and the
gateway module 78 formats the data object for transmission
to the user device.

FIG. 4 is a schematic block diagram of an embodiment of
a grid module 82 that includes a control unit 73, a pre-slice
manipulator 75, an encoder 77, a slicer 79, a post-slice
manipulator 81, a pre-slice de-manipulator 83, a decoder 85,
a de-slicer 87, and/or a post-slice de-manipulator 89. Note

US 9,411,818 B2

11

that the control unit 73 may be partially or completely exter-
nal to the grid module 82. For example, the control unit 73
may be part of the computing core at a remote location, part of
a user device, part of the DS managing unit 18, or distributed
amongst one or more DS storage units.

In an example of write operation, the pre-slice manipulator
75 receives a data segment 42 and a write instruction from an
authorized user device. The pre-slice manipulator 75 deter-
mines if pre-manipulation of the data segment 42 is required
and, if so, what type. The pre-slice manipulator 75 may make
the determination independently or based on instructions
from the control unit 73, where the determination is based on
a computing system-wide predetermination, a table lookup,
vault parameters associated with the user identification, the
type of data, security requirements, available DSN memory,
performance requirements, and/or other metadata.

Once a positive determination is made, the pre-slice
manipulator 75 manipulates the data segment 42 in accor-
dance with the type of manipulation. For example, the type of
manipulation may be compression (e.g., Lempel-Ziv-Welch,
Huffman, Golomb, fractal, wavelet, etc.), signatures (e.g.,
Digital Signature Algorithm (DSA), Elliptic Curve DSA,
Secure Hash Algorithm, etc.), watermarking, tagging,
encryption (e.g., Data Encryption Standard, Advanced
Encryption Standard, etc.), adding metadata (e.g., time/date
stamping, user information, file type, etc.), cyclic redundancy
check (e.g., CRC32), and/or other data manipulations to pro-
duce the pre-manipulated data segment.

The encoder 77 encodes the pre-manipulated data segment
42 using a forward error correction (FEC) encoder (and/or
other type of erasure coding and/or error coding) to produce
an encoded data segment 94. The encoder 77 determines
which forward error correction algorithm to use based on a
predetermination associated with the user’s vault, a time
based algorithm, user direction, DS managing unit direction,
control unit direction, as a function of the data type, as a
function of the data segment 42 metadata, and/or any other
factor to determine algorithm type. The forward error correc-
tion algorithm may be Golay, Multidimensional parity, Reed-
Solomon, Hamming, Bose Ray Chauduri Hocquenghem
(BCH), Cauchy-Reed-Solomon, or any other FEC encoder.
Note that the encoder 77 may use a different encoding algo-
rithm for each data segment 42, the same encoding algorithm
for the data segments 42 of a data object, or a combination
thereof.

The encoded data segment 94 is of greater size than the data
segment 42 by the overhead rate of the encoding algorithm by
a factor of X/T, where X is the width or number of slices, and
T is the read threshold. In this regard, the corresponding
decoding process can accommodate at most X-T missing EC
data slices and still recreate the data segment 42. For example,
if X=16 and T=10, then the data segment 42 will be recover-
able as long as 10 or more EC data slices per data segment are
not corrupted.

The slicer 79 transforms the encoded data segment 94 into
EC data slices in accordance with the slicing parameter from
the vault for this user and/or data segment 42. For example, if
the slicing parameter is X=16, then the slicer slices each
encoded data segment 94 into 16 encoded slices.

The post-slice manipulator 81 performs, if enabled, post-
manipulation on the encoded slices to produce the EC data
slices. If enabled, the post-slice manipulator 81 determines
the type of post-manipulation, which may be based on a
computing system-wide predetermination, parameters in the
vault for this user, a table lookup, the user identification, the
type of data, security requirements, available DSN memory,
performance requirements, control unit directed, and/or other

10

15

20

25

30

35

40

45

50

55

60

65

12

metadata. Note that the type of post-slice manipulation may
include slice level compression, signatures, encryption, CRC,
addressing, watermarking, tagging, adding metadata, and/or
other manipulation to improve the effectiveness of the com-
puting system.

In an example of a read operation, the post-slice de-ma-
nipulator 89 receives at least a read threshold number of EC
data slices and performs the inverse function of the post-slice
manipulator 81 to produce a plurality of encoded slices. The
de-slicer 87 de-slices the encoded slices to produce an
encoded data segment 94. The decoder 85 performs the
inverse function of the encoder 77 to recapture the data seg-
ment 42. The pre-slice de-manipulator 83 performs the
inverse function of the pre-slice manipulator 75 to recapture
the data segment.

FIG. 5 is a diagram of an example of slicing an encoded
data segment 94 by the slicer 79. In this example, the encoded
data segment includes thirty-two bits, but may include more
orlessbits. The slicer 79 disperses the bits of the encoded data
segment 94 across the EC data slices in a pattern as shown. As
such, each EC data slice does not include consecutive bits of
the data segment 94 reducing the impact of consecutive bit
failures on data recovery. For example, if EC data slice 2
(which includes bits 1, 5,9, 13,17, 25, and 29) is unavailable
(e.g., lost, inaccessible, or corrupted), the data segment can be
reconstructed from the other EC data slices (e.g., 1,3 and 4 for
a read threshold of 3 and a width of 4).

FIG. 6 is a schematic block diagram of an embodiment of
a file system hierarchy including a plurality of user virtual
memories in a virtual DSN address space 148, a virtual dis-
persed storage network (DSN) address to physical location
table 142, and a physical dispersed storage network (DSN)
memory 22. The file system hierarchy is an illustration of
translating a user virtual memory address space 152 into a
virtual dispersed storage network (DSN) address space 148
and then to a physical address in a DSN memory 22. In this
illustration, the physical DSN memory 22 includes a plurality
of DS storage units 36 (e.g., A, C, D, and F). In an example,
where there are four pillars, there are four slices (X=4) cre-
ated for each of Y data segments. Pillars can be allocated to
more than one DS storage unit, but a given DS storage unit is
not generally assigned to store more than one pillar from a
given file/data object of a user vault to improve system robust-
ness (e.g., avoiding loss of multiple slices of a data segment as
a result of a single DS storage unit failure).

In an embodiment, one of the plurality of user virtual
memories 152a-» utilizes a native OS file system to access the
virtual DSN address space 148 by including source name
information in requests such as read, write, modify, delete,
list, etc. A vault identifier in the source name and/or a file/
block name may be used to index the virtual DSN address
space 148 to determine a user vault. A unique virtual vault is
associated with each user (e.g., an individual, a group of
individuals, a business entity, a group of business entities,
etc.) and may contain operational parameters, user attributes
(e.g., user identification, billing data, etc.) and a list of DSN
memories 22 and a plurality of storage units 36 for a DSN
memory 22 that may be utilized to support the user.

In an example, the total virtual DSN address space 148 is
defined by a forty-eight byte identifier thus creating 25648
possible slice names. The virtual DSN address space 148
accommodates addressing of EC data slices corresponding to
segments of data objects (e.g., data file, blocks, streams) over
various generations and vaults. The slice name is a virtual
DSN address and remains the same even as different DS
memories 22 or DS storage units 36 are added or deleted from
the physical DSN memory 22.

US 9,411,818 B2

13

A user has a range of virtual DSN addresses assigned to
their vault, user virtual memory 152a-n. For instance, the
virtual DSN addresses typically do not change over the opera-
tional lifespan of the system for the user. In another instance,
the virtual DSN address space 148 is dynamically altered
from time to time to provide such benefits as improved secu-
rity and expansion, retraction, and/or capability. A virtual
DSN address space 148 security algorithm may alter the
virtual DSN address space 148 according to one or more of a
command (e.g., from the DS managing unit 18), a schedule, a
detected security breach, or any other trigger. The virtual
DSN address may also be encrypted in use thus requiring
encryption and decryption steps whenever the virtual DSN
address is used.

The vault and file name index used to access the virtual
DSN address space 148 and to create the slice names (virtual
DSN addresses) may also be used as an index to access the
virtual DSN address to physical location table 142. For
example, the virtual DSN address to physical location table
142 is sorted by vaults and pillars so that subsequent
addresses are organized by pillar of the file data segments of
a data object that have EC data slices with the same slice
identifier and hence are typically stored at the same DS stor-
age unit (e.g., slices having a first pillar identifier are stored in
DS storage unit A of DSN memory 22). The output of the
access to the virtual DSN address to physical location table
142 is the DSN memory identifier 154 and DS storage unit
identifiers 156. A source name, data segment header and/or
slice name may include the DSN memory identifier 154 and/
or DS storage unit identifiers 156.

The slice names may be used as the virtual index to the
memory system of each DS storage unit 36 of a particular DS
memory 22 to gain access to the physical location of the EC
data slices. In this instance, the DS storage unit 36 of the DS
memory 22 maintains a local table correlating slice names
(virtual DSN address) to the addresses of the physical media
internal to the DS storage unit 36. For example, user number
1 has a vault identified operational parameter of four pillars
and pillar 0 is mapped to DS storage unit A of DSN memory
22, pillar 1 is mapped to DS storage unit C of DSN memory
22, pillar 2 is mapped to DS storage unit D of DSN memory
22, and pillar 3 is mapped to DS storage unit F of DSN
memory 22.

FIG. 7 is a schematic block diagram of an embodiment of
a computer system 200 operable to access a data object from
DSN memory 22. The system includes one or more user
devices 12a-b, a local DSN memory 22, an external network
220 and an external memory 224. In an embodiment, the user
device 12a and the user device 125 are operably coupled to
the DSN memory 22 through a local connection or local area
network or through an external network such as external
network 220. The user devices 12a-b are operably coupled to
the external memory 224 through the external network 220.
The external memory 224 may include, for example, a file
server, web server, another DSN memory 22, etc. The exter-
nal network 220 may include a metropolitan area network
(MAN) and/or a wide area network (e.g., the internet and/or
intranet).

User device 12a-b includes a graphical user interface
(GUI) 206, a browser 208, an operating system (OS) 210 and
application program 212. The OS 210 provides an operating
environment for the user device 12 and acts as an intermedi-
ary between modules (including hardware and/or software
applications) of the user device 12. The GUI 206 provides the
interface to a user device display. The application program
212 includes software, and hardware (such as processing
modules) necessary to operate the software, that perform

30

40

45

14

functions or tasks for a user of the user device or for another
application program or device. Examples of application pro-
grams include text or word processing programs, image pro-
cessing programs, database programs, development tools,
drawing programs, communication programs, etc. In an
embodiment, the application program 212 includes a video
and/or audio multimedia player, such as Windows Media
Player, Apple Quicktime, Real Player, Apple iTunes, Adobe
Flash Player, etc.

The browser 208 is operable to retrieve and display an
information resource, such as a text file (.doc, .pdf, etc.),
HTML. file, XML file, image file (such as .jpg, .pdf, .tiff, etc.),
video file (such as .swf, .mov, .mpg4, .aiff, etc.), audio file
(such as, .wma, .wav, .mp3, etc), or other types of files. The
browser 208 includes an application plugin 214 that is oper-
able to interact with the application program 212. Through
the application plugin 214, the browser 208 is operable to
launch the application program 212 to either open a file in a
GUI external to the web browser or within a web page, win-
dow or other GUI generated by the browser 208.

In an embodiment illustrated in user device 12a, the
browser 208 includes DS processing module 34. The browser
208 is operable to recognize an address for the DSN memory
22 or file name of a data object stored in DS memory 22 and
launch DS processing module 34 to retrieve the data object
for display within a web page, window or other GUI gener-
ated by the browser 208. In another embodiment, the browser
208 launches the application program 212 to either display
the data object external to the web browser or within a web
page, window or other GUI generated by the browser 208.

In an embodiment illustrated in User Device 125, the
browser 208 includes a DS processing plugin 218 that is
operable to interact with DS processing 34. The browser 208
is operable to recognize an address for the DSN memory 22 or
file name of a data object stored in DS memory 22 and
through the DS processing plugin 218, the browser 208 is
operable to launch DS processing module 34 to access the
data object and to either open the data object in a GUI external
to the web browser or within a web page, window or other
GUI generated by the browser 208.

FIG. 8 is a logic flow diagram of an embodiment of a
method 240 for accessing a data object stored in a DSN
memory 22 by a browser 208 in user device 12a-b. In step
242, the browser 208 receives a file command that includes a
file name of a data object. In an embodiment, the file name of
the data object includes a domain name, a data object name
and file type identifier. For example, the file name of the data
object may include the following: localdsnet.com/dataobject-
name.wmv, wherein localdsnet.com is the domain name
referring to a local DSN memory 22. In another example, the
file name of the data object includes the following: externald-
snet.com/vaultl/dataobjectname.doc, wherein externaldsnet-
.com is a domain name that points to an external DS memory
22 accessed by the external network 220 and vaultl/dataob-
jectname.doc is the data object name including a vault iden-
tifier of the virtual DSN address. In another example, the file
name of the data object includes the following: webserver-
s.com/partitionl. mpg4, wherein the domain name webserver-
s.com refers to webservers in external memory 224. The file
names in the above examples also include a file type identifier,
such as .pdf for an Adobe text file and .wmv for a Windows
Media video file. In another embodiment, the file name may
include an IP address for the destination, rather than a domain
name. For example, an IP address may point to a DSN
memory 22 in the file name. In another embodiment, the file
name may include a local drive to the user device 12.

US 9,411,818 B2

15

Based on the file command for the data object, and in
particular for example, the domain name or IP address or local
drive in the file name, the browser 208 determines a location
for the data object in step 244. The file name may be used to
perform a table lookup, an address translation, domain name
service lookup, vault and file name index, or a link/web
directory lookup to determine the location of the data object.
When the browser determines that the data object is located in
a local or external DSN memory 22, it launches DS process-
ing 34. The DS processing 34 determines a virtual DSN
address of the data object for the browser 208 in step 246. In
an embodiment, the file name includes the data object name
88 shown in FIG. 3, and the virtual DSN address is deter-
mined from the data object name 88 by accessing the virtual
DSN address space 148 for a user vault 200. In an embodi-
ment, the file name includes a vault identifier or other part of
avirtual DSN address of the data object. For example, the file
name of the data object may include a vault identifier or file ID
or source name or user identifier associated with the data
object, such as in the following: localdsnet.com/vaultl/file]D/
dataobjectname.mov or in the following: externaldsnet.
com/D SNvirtualaddress/dataobj ectname.pdf.

File data from the data object is retrieved from the DSN
memory in step 248 and processed for display either in a GUI
external to the browser 208 or within a web page, window or
other GUI generated by the browser 208. In an embodiment,
the whole data object is reconstructed prior to display. In
another embodiment, file data from the data object is
streamed to the application program 212 and displayed as
processed. In an embodiment, the browser 208 requests DS
processing module 34 to retrieve the data object for process-
ing by the application program 212.

FIG. 9 is a schematic block diagram of an embodiment of
a file name 260. In an embodiment, the file name 260 includes
one or more of a localdrive/domain name/IP address 262, a
vault ID 264, a DSN virtual address 266 (in whole or in part),
a data object name 268 and a file type identifier 270. The file
name 260 may include other parameters or alternate data as
well.

FIG. 10 s alogic flow diagram of a method for interpreting
a file command by the browser 208 in user device 12a-b to
display a data object stored in a DSN memory. In step 282, the
browser 208 receives a file command with a file name 260 of
a data object in response to a user input. In an embodiment,
the browser 208 displays an HTML or other type of formatted
page that includes a link to an embedded file command and
the user input is selecting the embedded link. For example,
the file command includes the file name for the data object
and may also include an identifier of an application program
212 to display the data object and other parameters for retriev-
ing and/or displaying the data object. For example, the file
command may include:

<OBIJECT ID=“MediaPlayer” WIDTH="192" HEIGHT="190"
<PARAM name="FileName” VALUE=
“localdsnet.com/dataobjectname. wmv’>

<PARAM name="ShowControls” VALUE="true”>

<PARAM name="ShowStatusBar” value="false”>
</OBJECT>

The above file command example includes an object identi-
fier that identifies Windows Media Player as the multimedia
player. It also includes the file name of the data object as
localdsnet.com/dataobjectname.wmv. In addition, it specifies
a window width and height to display the data object. The file
command also includes a parameter to show video controls
and not show a status bar.

20

30

40

45

55

60

16

In another example, the file command embedded in a web
page may include:

<ahref="externalsnet.com/virtualDSNaddress/dataobjectname.pdf”>
Download PDF

In this example, the file command includes the virtual DSN
address as part of the file name.
It also includes a file type identifier as a PDF file.
In another embodiment, the file command may include alocal
drive to the user device 12.
For example the file command may include:
<open F/vaultl/dataobjectname.doc>
In this example, the local drive designated as E/is mapped to
the DSN memory 22.
In another embodiment, the browser 208 receives a text
string input with a file name 260 of a data object. For example,
the browser may receive a user input of the following file

name 260 in the form of text string input in a user prompt of
the GUI: “http://localsnet.com/vaultl/dataobj ectnam-
e.mp3”.

The browser 208 then interprets the file command as a
request to display or open the data object using application
program 212 in step 284. The browser 208 determines the
application program 212 from an identifier in the file com-
mand in step 286. For example, the application program 212
may be identified in the file command. In another embodi-
ment, the browser 208 determines application program 212
from the file type identifier in step 288. For example, when the
file name includes a file type identifier 270 (such as .wav,
.mov, .mp3, etc.) or the file command includes a parameter
with a file type identifier (such as type="application/x-shock-
wave-flash”), the browser 208 selects a multimedia player
operable to process and display such identified file types.

FIG. 11 is a logic flow diagram of an embodiment of a
method 300 for determining a location of a data object in
response to a file command. In step 302, the browser 208
processes the file command to determine a location of the data
object. For example, the file name may include a local drive or
domain name or an IP address of the location of the data
object. The domain name and/or IP address may be used to
perform a table lookup, an address translation, domain name
service lookup or a link/web directory lookup to determine
the location of the data object. In an embodiment, the browser
208 determines the location of the data object as the DSN
memory. In another embodiment, the application program
212 determines the location of the data object as the DSN
memory. In step 304, when the file name points to a DSN
memory 22, either local or external, the browser 208 requests
DS processing module 34 to retrieve the data object from the
DSN memory 22 as an input for application program 212. In
another embodiment, application program 212 requests the
DS processing module 34 to retrieve the data object from the
DSN memory 22.

When the file name points to another type of location, other
than a DSN memory 22, either local or external, in step 308,
the data object is retrieved from the other location in step 310.
The other location includes, for example, a file server, web
server, another type of memory, etc. When the location cannot
be identified in step 308, the process returns to step 302 to
further process the file name or request further information.

FIG. 12 is a logic flow diagram of an embodiment of a
method 318 for retrieving the data object from the DSN
memory. In step 320, a virtual DSN address for the data object
is determined. In an embodiment, the file name includes one
or more fields of the virtual DSN address of the data object.

US 9,411,818 B2

17

For example, the file name of the data object includes the
following: localdsnet.com/DSNvirtualaddress/dataobject-
name.mov. The virtual DSN address of the data object may be
the source name 35 shown in FIG. 3 or other identifier that
identifies the virtual DSN address space 148 in the user vault
assigned to the data object or its corresponding data segments
or data slices.

In another embodiment, the file name includes the data
object name 88 shown in FIG. 3 and the virtual DSN address
is determined from the data object name 88 and/or a user ID
86 associated with user device 12a-b. The virtual DSN
address for the data object is then determined from a look up
of'the virtual DSN address space 148 for a user vault shown in
FIG. 6. From the virtual DSN address of the data object, the
DS processing module 34 then determines a physical address
for a plurality of data slices of data segments for the data
object based on the virtual DSN address to physical location
table 142.

In step 322, the DS processing module 34 determines
whether to stream the data object. In an embodiment, the data
object includes multimedia content, such as audio and/or
video file data. The DS processing module 34 may stream file
data of the data object to the application program 212 as
sequential data segments. For example, the data object is
stored by partitioning the data object into data segments 1
through Y, and then generating a number X of encoded data
slices from each data segment based on an error encoding
dispersal function. To stream file data from the data object,
the DS processing module 34 reconstructs each of the data
segments in sequential order 1 through Y.

When the DS processing module determines to stream the
data object, the DS processing module 34 determines a next
sequential data segment of the data object to produce an
identified data segment in step 324. The DS processing mod-
ule 34 retrieves at least a number T of the plurality of encoded
data slices needed to reconstruct the identified data segment
in step 326. In step 328, the DS processing module 34 recon-
structs the identified data segment to produce a reconstructed
data segment. The DS processing module 34 provides the
reconstructed data segment to the application program 212,
such as a multimedia player or other multimedia platform, for
processing (such as rendering of the file data) for display. In
an embodiment, the application program 212 provides the
rendered file data to the GUI 206 for final conversion to a
format compatible with the user device display. In step 332,
the DS processing module 34 determines whether additional
data segments need to be reconstructed, e.g. whether a num-
berY of data segments have been reconstructed. If so, the DS
processing module 34 ends streaming of the data object in
step 334. If not, the process continues to step 324 to identity
the next sequential data segment.

When the DS processing module 34 determines to down-
load the data object without streaming in step 332, the DS
processing module 34 reconstructs the plurality of data seg-
ments of the data object in step 336 and then provides the
location of downloaded data object to the application pro-
gram 212 when the download is complete in step 338.

FIG. 13 is a schematic block diagram of another embodi-
ment of a computer system 200 operable to access a data
object from DSN memory 22. The computer system 200
includes one or more user devices 12, 14, a DS processing
unit 16, alocal DSN memory 22, an external network 220 and
an external memory 224. In an embodiment, the user device
12 and the user device 14 are operably coupled to the DSN
memory 22 through a local connection or local area network
or through an external network such as external network 220.

10

15

20

25

30

35

40

45

50

55

60

65

18

The user devices 12, 14 are operably coupled to the external
memory 224 through the external network 220.

Application program 212 in user device 212 includes DS
processing 34 that is operable to access data objects in DSN
memory 22. The DS processing 34 enables the application
program 212 to recognize virtual DSN addresses of data
objects stored in DSN memory 22 and store, retrieve and
access such data objects from DSN memory 22. In user device
12, application program 212 includes a DS processing plugin
216 that is operable to launch DS processing 34 in DS pro-
cessing unit 16. The DS processing plugin 216 enables appli-
cation program 212 to recognize virtual DSN addresses of
data objects stored in DSN memory 22 and store, retrieve and
access such data objects from DSN memory 22.

FIG. 14 is a logic flow diagram of an embodiment of a
method 350 for accessing a data object stored in a DSN
memory 22 by an application program 212 in user device 12,
14. In step 352, the application program receives a file com-
mand that includes a file name of a data object. Based on the
file command for the data object, and in particular for
example, a drive or IP address or domain name, the applica-
tion program 212 determines a location for the data object in
step 354. For example, the IP address or domain name may be
used to perform a table lookup, an address translation,
domain name service lookup or a link/web directory lookup
to determine the location of the data object. A local drive may
be mapped to a local DSN memory 22. When the application
program 212 determines that the data object is located in a
local or external DSN memory 22, it launches DS processing
34. The DS processing 34 determines a virtual DSN address
of'the data object for the application program 212 in step 356.
File data from the data object is retrieved from the DSN
memory in step 358. The application program 212 then pro-
cesses the data object for display. In an embodiment, the data
object is downloaded prior to display. In another embodi-
ment, file data from the data object is streamed to the appli-
cation program 212 and displayed as processed.

FIG. 15 is a schematic block diagram of another embodi-
ment of a computer system 400 operable to access a data
object from DSN memory 22. The computer system 400
includes one or more user devices 12¢-d, a local DSN
memory 22, an external network 220 and an external memory
224. In an embodiment, the user devices 12¢-d are operably
coupled to the DSN memory 22 through a local connection or
local area network or through an external network such as
external network 220. The user devices 12¢-d are operably
coupled to the external memory 224 through the external
network 220. The external memory 224 may include, for
example, a file server, web server, another DSN memory 22,
etc. The external network may include a metropolitan area
network (MAN) and/or a wide area network (e.g., the internet
and/or intranet).

User Device 12¢ includes a graphical user interface (GUI)
206, a command line interface (CLI) 402, a command line
interpreter 404, an operating system (OS) 210 and application
program 212. The CLI1402 is a text interface for receiving file
commands to perform various tasks. The CLI interpreter 404
receives the file commands entered at the CLI 402 and inter-
prets and executes the file commands. For example, the com-
mand line interpreter 404 may include a Unix shell program
(such sh, Bash, ksh, csh, etc.), DOS COMMAND.COM,
Microsoft Windows PowerShell, Macintosh Terminal, etc.
The application program 212 includes a video and/or audio
media player, such as Windows Media Player, Apple Quick-
time, Real Player, Apple iTunes, Adobe Flash Player, etc. In
an embodiment illustrated in user device 12¢, the application
program 212 includes a DS processing module 34 that is

US 9,411,818 B2

19

operable to interface with DSN memory 22 through DSN
interface 32. The application program 212 may also access
external memory 224 through interface 30. In an embodi-
ment, in response to one or more file commands input at the
CLI 402, the CLI interpreter 404 is operable to launch the
application program 212 to retrieve and display a data object
stored in DSN memory 22.

FIG. 16 is a logic flow diagram of an embodiment of a
method 410 for retrieving a data object from a DSN memory
22. In step 420, the command line interpreter 404 receives a
command line input at the CLI 302. The command line inter-
preter 404 analyzes the one or more file commands in the
input and interprets the file command to launch an application
program 212 to open the data object in step 422. In this
embodiment, the application program 212 receives the file
name of the data object and determines the data object is
located in a DSN memory in step 424. As described herein,
the application program 212 determines the location of the
data object based on the file command. For example, the file
name of the data object includes a local drive or domain name
or an IP address that points to the location of the data object.
For example, when “localdsnet.com” is a domain name for a
local DSN memory 22, the application program 212 inter-
prets the file name “localdsnet.com/dataobjectname.mov” to
indicate that the data object is located in the local DSN
memory 22. In another example, when “externaldsnet.com”
is a domain name for an external DSN memory 22 accessed
by the external network 220, the application program 212
determines that a data object with a file name “externaldsnet-
.com/dataobjectname.mp3” is located in the external DS
memory 22.

The application program 212 then requests the DS process-
ing module 34 to retrieve the data object in step 426. The DS
processing module 34 may stream sequential data segments
of'the data object to the application program 212 for display
or reconstruct the data object prior to display. The application
program 212 receives the file data from the data object and
processes the file data for display.

Referring back to FIG. 15, the command line interpreter
404 and DS processing 34 are operably coupled for example
by the operating system 210. In operation, the command line
interpreter 404, in response to one or more file commands
input at CLI 302, recognizes a domain name or IP address for
DSN memory 22 in the file command and launches DS pro-
cessing module 34 to retrieve a data object in DSN memory
22 and input the data object to application program 212. The
command line interpreter 404 also launches application pro-
gram 212 to receive file data from DS processing module 34
to open it for display.

FIG. 17 is a logic flow diagram of an embodiment of a
method 450 for retrieving a data object from a DSN memory
for display. In step 452, the command line interpreter 404
receives a command line input at the CLI 302. The command
line interpreter 404 analyzes the one or more file commands
in the input and interprets the file command to launch appli-
cation program 212 to open the data object in step 454.

In this embodiment, the command line interpreter 404
determines the data object is located in the DSN memory in
step 456. The command line interpreter 404 determines the
location of the data object based on a local drive, domain
name or IP address in the file command. The command line
interpreter 404 then requests the DS processing module 34 to
retrieve the data object for the application program 212 in step
458. The DS processing module 34 may stream sequential
data segments of the data object to the application program
212 for display or reconstruct the whole data object prior to
display. In step 460, the command line interface requests the

10

15

20

25

30

35

40

45

50

55

60

20

application program 212 to receive the data object from the
DS processing module 34 and process it for display.

As may be used herein, the term(s) “coupled to” and/or
“coupling” and/or includes direct coupling between items
and/or indirect coupling between items via an intervening
item (e.g., an item includes, but is not limited to, a component,
an element, a circuit, and/or a module). As may further be
used herein, inferred coupling (i.e., where one element is
coupled to another element by inference) includes direct and
indirect coupling between two items in the same manner as
“coupled to”. As may even further be used herein, the term
“operable to” indicates that an item includes one or more of
power connections, input(s), output(s), etc., to perform one or
more its corresponding functions and may further include
inferred coupling to one or more other items. As may still
further be used herein, the term “associated with”, includes
direct and/or indirect coupling of separate items and/or one
item being embedded within another item.

The present invention has also been described above with
the aid of method steps illustrating the performance of speci-
fied functions and relationships thereof. The boundaries and
sequence of these functional building blocks and method
steps have been arbitrarily defined herein for convenience of
description. Alternate boundaries and sequences can be
defined so long as the specified functions and relationships
are appropriately performed. Any such alternate boundaries
or sequences are thus within the scope and spirit of the
claimed invention.

The present invention has been described above with the
aid of functional building blocks illustrating the performance
of certain significant functions. The boundaries of these func-
tional building blocks have been arbitrarily defined for con-
venience of description. Alternate boundaries could be
defined as long as the certain significant functions are appro-
priately performed. Similarly, flow diagram blocks may also
have been arbitrarily defined herein to illustrate certain sig-
nificant functionality. To the extent used, the flow diagram
block boundaries and sequence could have been defined oth-
erwise and still perform the certain significant functionality.
Such alternate definitions of both functional building blocks
and flow diagram blocks and sequences are thus within the
scope and spirit of the claimed invention. One of average skill
in the art will also recognize that the functional building
blocks, and other illustrative blocks, modules and compo-
nents herein, can be implemented as illustrated or by discrete
components, application specific integrated circuits, proces-
sors executing appropriate software and the like or any com-
bination thereof.

What is claimed is:

1. A method for displaying a data object, comprises:

interpreting a file command to display the data object by a

command line interpreter operating on a user device,
wherein the file command includes a file name of the
data object;

determining the data object is stored in a distributed storage

network (DSN) memory based on the file name, wherein
the data object is stored as a plurality of data segments,
wherein a data segment of the plurality of data segments
is stored as an X number of encoded data slices and
wherein a threshold number T corresponds to a thresh-
old value of the X number of encoded data slices needed
to reconstruct the data segment using an error encoding
dispersal storage function and wherein X>T;
requesting a DSN processing module to retrieve the data
object from the DSN memory by:
translating the file name into a virtual DSN address to
determine a location in the DSN memory of the data

US 9,411,818 B2

21

object, wherein the file name includes a vault identi-
fier of a virtual DSN address space assigned to the
user device; and

retrieving the data object from the DSN memory.

2. The method of claim 1, wherein the file name for the data
object includes a domain name for the DSN memory, a data
object name and a file type identifier.

3. The method of claim 1, wherein retrieving the data
object from the DSN memory includes:

retrieving at least the threshold number T of the X number
of'encoded data slices from the DSN memory; and

reconstructing the data object from at least the threshold
number T of encoded data slices.

4. The method of claim 3, further comprising:

determining a plurality of virtual slice addresses for at least
the threshold number T encoded data slices using the
virtual DSN address, wherein a virtual slice address
includes:

a slice index based on the vault identifier and a pillar
identifier that identifies a pillar associated with a data
slice; and

a source data name containing an identifier of the data
object.

5. The method of claim 1, further comprising:

retrieving the data object by the DSN processing module
by streaming sequential data segments of the plurality of
data segments of the data object.

6. The method of claim 5, wherein retrieving the data
object by the DSN processing module by streaming sequen-
tial data segments of the plurality of data segments of the data
object includes:

translating the file name into a virtual DSN address to
determine a location of the data object in the DSN
memory;

identifying a next sequential data segment of the plurality
of data segments to generate an identified data segment;

retrieving at least the threshold number T of encoded data
slices for the identified data segment from the DSN
memory;

reconstructing the identified data segment from at least the
threshold number T of the encoded data slices to produce
a reconstructed data segment; and

providing the reconstructed data segment for display on the
user device.

7. The method of claim 6, further comprising:

determining an application program to process the data
object based on the file command including:
determining a file type of the data object based on a file

type identifier, wherein the file type is a multimedia
file; and

identifying a multimedia player to display the data
object based on the file type; and

requesting the multimedia player to input the data object
and process the data object for display.

8. The method of claim 7, further comprising:

processing the reconstructed data segment by the multime-
dia player to generate multimedia content; and

transmitting the multimedia content by the multimedia
player to a graphical user interface for display on the
user device.

9. A user device for retrieving a data object, comprises:

a distributed storage network (DSN) interface that is oper-
ably coupled to interface with a DSN memory, wherein
the data object is stored in the DSN memory;

a command line interpreter operating in the user device
operable to:

10

15

20

45

50

60

22

interpret a file command to retrieve the data object,
wherein the file command includes a file name of the
data object and wherein the file name includes a vault
identifier of a virtual DSN address space assigned to
the user device; and

determine the data object is stored in the DSN memory
based on the file name, wherein the data object is
stored as a plurality of data segments, wherein a data
segment of the plurality of data segments is stored as
an X number of encoded data slices and wherein a
threshold number T corresponds to a threshold value
of the X number of encoded data slices needed to
reconstruct the data segment using an error encoding
dispersal storage function and wherein X>T; and

a processing module operable to:

receive a request from the command line interpreter to
retrieve the data object from the DSN memory;

translate the file name of the data object into a virtual
DSN address to determine a location in the DSN
memory of the data object using the vault identifier of
the virtual DSN address space assigned to the user
device;

retrieve the data object from the determined location in
the DSN memory by retrieving, for each data segment
of'the plurality of data segments, at least the threshold
number T of encoded data slices; and

reconstructing the plurality of data segments of the data
object from the pluralities of the at least the threshold
number T of encoded data slices.

10. The user device of claim 9, wherein the file name for the
data object includes a local drive of the user device that is
mapped to the DSN memory and wherein the command line
interpreter is further operable to determine that the data object
is stored in the DSN memory based on the local drive.

11. The user device of claim 9, wherein the command line
interpreter is further operable to:

determine a file type of the data object based on a file type

identifier, wherein the file type is a multimedia file; and
identify a multimedia player to display the data object
based on the file type.

12. The user device of claim 11, wherein the processing
module is operable to:

retrieve the data object from the DSN memory by stream-

ing sequential data segments of the plurality of data
segments of the data object.
13. The user device of claim 12, wherein the processing
module is operable to:
identify a next sequential data segment of the plurality of
data segments to generate an identified data segment;

retrieve the at least the threshold number T of encoded data
slices for the identified data segment from the DSN
memory;

reconstruct the identified data segment from the at least the

threshold number T of encoded data slices to produce a
reconstructed data segment; and

providing the reconstructed data segment to the multime-

dia player.

14. The user device of claim 13, wherein the multimedia
player is operable to:

process the reconstructed data segment to generate multi-

media content; and

transmit the multimedia content to a graphical user inter-

face for display.

15. The user device of claim 9, wherein the processing
module is further operable to store the data object in the DSN
memory by:

US 9,411,818 B2

23

assigning an address to the data object from the virtual
DSN address space associated with the user device;

partitioning the data object into the plurality of data seg-
ments;

generating, for the plurality of data segments, a plurality of
the X number of encoded data slices based on an error
encoding dispersal function;

assigning a plurality of X number of'slice names to each of
the plurality of the X number of encoded data slices,
wherein the slice name includes the vault identifier that
identifies the virtual DSN address space associated with
the user device; and

storing the data object in the DSN memory as the plurality
of the X number of encoded data slices in accordance
with the plurality of X number of slice names.

16. A user device comprises:

a distributed storage network (DSN) interface that is oper-
ably coupled to interface with a DSN memory;

acommand line interpreter operable to interpret a file com-
mand to store a data object in the DSN memory; and

a processing module coupled to the DSN interface oper-
able for storing the data object in the DSN memory by:
partitioning the data object into a plurality of data seg-

ments;

15

24

for each of the plurality of data segments, generating a
plurality of encoded data slices based on an error
encoding dispersal function; and

assigning a slice name to each of the plurality of encoded

data slices, wherein the slice name includes a vault iden-

tifier that identifies a virtual DSN address space associ-
ated with the user device, storing the plurality of
encoded data slices in the DSN memory, a slice index
based on the vault identifier and a pillar identifier that

identifies a pillar associated with a data slice; and a

source data name containing an identifier of the data

object.

17. The user device of claim 16, wherein the processing
module is operable to generate a file name for the data object,
wherein the file name includes a domain name for the DSN
memory, a data object name and a file type identifier.

18. The user device of claim 17, wherein the processing
module is operable to store the plurality of encoded data slices
in the DSN memory by:

assigning the plurality of encoded data slices to a plurality

of pillars of the DSN memory for storing the data object,

wherein a data slice of each of the plurality of data
segments of the data object is assigned to one of the
pillars of the plurality of pillars.

#* #* #* #* #*

